(2x+1)=(3x^2-2x-5)

Simple and best practice solution for (2x+1)=(3x^2-2x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1)=(3x^2-2x-5) equation:



(2x+1)=(3x^2-2x-5)
We move all terms to the left:
(2x+1)-((3x^2-2x-5))=0
We get rid of parentheses
2x-((3x^2-2x-5))+1=0
We calculate terms in parentheses: -((3x^2-2x-5)), so:
(3x^2-2x-5)
We get rid of parentheses
3x^2-2x-5
Back to the equation:
-(3x^2-2x-5)
We get rid of parentheses
-3x^2+2x+2x+5+1=0
We add all the numbers together, and all the variables
-3x^2+4x+6=0
a = -3; b = 4; c = +6;
Δ = b2-4ac
Δ = 42-4·(-3)·6
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{22}}{2*-3}=\frac{-4-2\sqrt{22}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{22}}{2*-3}=\frac{-4+2\sqrt{22}}{-6} $

See similar equations:

| a+3.2=5.5 | | 3x-20=38 | | 2(x-60)+2(30)=200 | | -6x=-3x+3 | | 100/y=0.06 | | 1/2x+4=89 | | m/9+12=-8 | | -13-n=n+3 | | 19c=5-2 | | 3z2–22z–16=0 | | X/100=6/25x | | 24r-8=22r+132 | | (2^½)^x+7=(2^2)^x | | x-73=-4x+87 | | 3x-1(2x+9)=10 | | 2(x+60)+2(30)=200 | | 1.7n=1.36 | | 3x-1(2x+9=10) | | -171-4x=117+5x | | (x/2)+2x/3=5/6 | | -171-4x=117 | | 6(x+5)=3(x-2 | | -9+2x=3x-6 | | 8(k)=20 | | 10,000-255x=2,500+10x | | -94+8x=50+4x | | 4/5=2x/50 | | -44-15x=28-13x | | 3x=1=4x-2 | | 102÷4=3m | | 250=189-w | | 10,000-255x=2,500+100x |

Equations solver categories